Шероховатая эндоплазматическая сеть — это

Сокращение трубочек заставляет белки двигаться по эндоплазматическому ретикулуму

Рис. 1. Схема строения эндоплазматического ретикулума. Рисунок с сайта en.wikipedia.org

Несмотря на древнюю историю микроскопии, возможность наблюдать за множеством молекул в реальном времени в живых клетках биологи получили относительно недавно. Но теперь, например, можно строить и анализировать траектории отдельных молекул, двигающихся внутри клетки и ее органелл. Авторы недавней статьи, опубликованной в журнале Nature Cell Biology, решили разобраться, за счет чего перемещаются молекулы по эндоплазматическому ретикулуму — системе мембранных каналов и полостей, в которых созревают многие клеточные белки. Оказалось, что это происходит из-за периодических сокращений некоторых трубочек, которые разгоняют люминальную жидкость, заполняющую эту органеллу.

Любая клетка в составе многоклеточного организма постоянно сообщается с другими клетками, выделяя в межклеточную среду разнообразные белки. Они доставляются к клеточной мембране внутри маленьких мембранных пузырьков — везикул, которые сливаются с мембраной клетки, высвобождая свой груз наружу. Везикулы отпочковываются от большой мембранной системы внутри клетки — эндоплазматического ретикулума (ЭПР). ЭПР представляет собой систему ограниченных фосфолипидной мембраной полостей, которые из-за характерной формы называются трубочками и цистернами. Сочленения между трубочками и цистернами называют узлами.

Функционально и морфологически ЭПР подразделяется на шероховатый и гладкий (рис. 1). Поверхность шероховатого ЭПР густо усеяна рибосомами — клеточными фабриками по производству белков. На гладком ЭПР рибосом нет, поэтому он не принимает участие в синтезе белка. Вместо этого он служит местом синтеза многих липидов и внутриклеточным депо ионов кальция.

Рибосомы, сидящие на шероховатом ЭПР, синтезируют белки, отправляя их во внутреннее пространство ЭПР — люмен. Люмен заполнен люминальной жидкостью, по составу близкой к цитоплазме. Произведенные рибосомами полипептидные цепочки сами по себе еще не являются функциональными белками. После трансляции специальные белки — шапероны — придают им нужную пространственную структуру, другие белки навешивают углеводные группы, соединяют остатки цистеина друг с другом, образуя цистеиновые мостики. Ферменты, осуществляющие все эти реакции, плавают в люминальной жидкости, по очереди «обрабатывая» созревающий белок.

Важный вопрос: как именно двигаются созревающие белки внутри люмена? Первоначально считалось, что это происходит из-за диффузии, то есть они просто хаотически двигаются между молекулами воды в люмене без участия какой-либо дополнительной помощи. Однако это предположение имеет слабые места. Прежде всего, при диффузии движение молекул слишком медленное и ненаправленное для того, чтобы белки, предназначенные для секреции, проходили насквозь весь ЭПР и отпочковывались в составе везикулы с нужной его стороны (которая обращена к клеточной мембране). Так что вопрос оставался открытым.

Недавно в журнале Nature Cell Biology были опубликованы результаты группы ученых из Кембриджского университета и Высшей нормальной школы во главе с Эдвардом Авезовым (см.: Avezov Lab). Они изучали перемещение молекул белков по эндоплазматическому ретикулуму непосредственно в живых клетках с помощью микроскопии сверхвысокого разрешения и анализа траекторий отдельных частиц. Исследования проводились на клетках линий COS7 (похожие на фибробласты клетки из почек обезьяны) и HEK-293 (клетки почки человеческих эмбрионов). Оказалось, что внутри ЭПР текут настоящие потоки, причем некоторые из них создаются за счет сокращения трубочек, которое протекает с затратой энергии. Открытие активного тока жидкости внутри ЭПР позволяет следить его за динамикой, что особенно важно для изучения биологии клеток с сильно развитым ЭПР (например, нейронов).

Уже некоторое время известно, что перемещение белков по ЭПР сопровождается затратой энергии в виде АТФ (см., например, M. J. Dayel et al., 1999. Diffusion of green fluorescent protein in the aqueous-phase lumen of endoplasmic reticulum). Это было показано в экспериментах по восстановлению флуоресценции после фотообесцвечивания (fluorescence recovery after photobleaching, FRAP), в ходе которых в клетки в виде плазмид доставляли гены, кодирующие белки ЭПР с флуоресцентной частью, что позволяет наблюдать за их движением в микроскоп в реальном времени. Далее с помощью лазера выжигались белки в определенном участке ЭПР: содержащиеся в нем белки разрушались и этот участок превращался в черное пятно. Однако за счет того, что белки внутри ЭПР находятся в постоянном движении, постепенно брешь заполнялась новыми флуоресцентными молекулами. Однако, если в клетке было заблокировано образование АТФ, то черное пятно не заполнялось.

В обсуждаемом исследовании ученые воспользовались тем, что современные возможности микроскопии и вычислительные мощности таковы, что можно одновременно отслеживать движение множества отдельных молекул (Single-particle tracking, SPT) внутри ЭПР в живых клетках. При этом удается определять не только направление движения молекул, но и их скорость. Сначала были воспроизведены результаты о зависимости движения белков в ЭПР от АТФ: при экспериментально вызванной нехватке АТФ движение фотоактивируемого флуоресцентного белка резко замедлялось, и его молекулы не покидали область наблюдения. Так ученые удостоверились в том, что их методы подходят для работы с ЭПР. Очертания, получившиеся при наложении траекторий отдельных молекул друг на друга, соответствовали контуру ЭПР, что свидетельствует о достоверности данных, получаемых с помощью метода SPT (рис. 2). Эксперименты повторили на трех линиях клеток, и во всех случаях экспериментально вызванная нехватка АТФ приводила к замедлению движения молекул, хотя в клетках некоторых линий молекулы двигались быстрее, чем в других. Анализ траекторий молекул показал, что молекула, находящаяся в любом месте ЭПР, имеет шанс обойти весь люмен, что согласуется с укоренившимся представлением об ЭПР как о непрерывной сети трубочек и цистерн.

Рис. 2. Слева — контур ЭПР, реконструированный по траекториям молекул; цвет отражает плотность молекул (чем светлее, тем выше плотность). Справа — восстановленный при помощи компьютерного моделирования «скелет» эндоплазматического ретикулума; трубочки показаны фиолетовым, узлы — зеленым. Рисунок из обсуждаемой статьи в Nature Cell Biology

Читайте также:  ДИОКСИДИН раствор — инструкция и цена в аптеках Украины, аналоги и показания Фармак Справочник лек

Затем были проанализированы скорости белковых молекул. Оказалось, что в узлах ЭПР они движутся медленно (по всей вероятности, за счет диффузии), а вот внутри трубочек и цистерн молекулы движутся гораздо быстрее (рис. 3). Применив еще один современный метод микроскопии (structured illumination microscopy, SIM), ученые обнаружили, что время от времени некоторые трубочки ЭПР пульсируют. Какой механизм обеспечивает сокращение трубочек ЭПР и какие белки в этом участвуют, пока выяснить не удалось, но ясно, что АТФ тратится именно здесь. По всей видимости, эти сокращения как раз и разгоняют люминальную жидкость, потоки которой увлекают молекулы белков. Любопытно, что молекулы в разных частях ЭПР ускоряются и замедляются асинхронно, однако пульсации трубочек устроены так, что течение жидкости не останавливается.

Рис. 3. Слева — наложение траекторий отслеженных молекул в ЭПР одной клетки. Цветами показана скорость молекул в разных участках траектории: голубым — медленная (0–10 мкм/с), красным — быстрая (около 30 мкм/с). Справа — результаты анализа ЭПР на связность, траектории молекул окрашены в соответствии с количеством посещенных узлов: темно-синий — 1 узел, синий — 2 узла, . красный — 8 узлов. Рисунки из обсуждаемой статьи в Nature Cell Biology

Подводя итог, можно сказать, что хотя на вопрос о причине движения белков по ЭПР теперь получен ответ, до полного понимания этого процесса, благодаря которому даже в клетках с очень протяженным ЭПР (например, в моторных нейронах) транспорт белков происходит без задержек, нам еще далеко. Дальнейшие исследования в этом направлении могут помочь справиться с некоторыми наследственными заболеваниями, например, со спастической параплегией (hereditary spastic paraplegia), которая выражается в прогрессирующей мышечной слабости и, возможно, вызвана нарушениями в циркуляции жидкости внутри ЭПР.

Источник: David Holcman, Pierre Parutto, Joseph E. Chambers, Marcus Fantham, Laurence J. Young, Stefan J. Marciniak, Clemens F. Kaminski, David Ron & Edward Avezov. Single particle trajectories reveal active endoplasmic reticulum luminal flow // Nature Cell Biology. 2018. DOI: 10.1038/s41556-018-0192-2.

Эндоплазматический ретикулум рисунок

  • Словарь юного биолога
  • Вопросы об океанах и морях
  • Вопросы о погоде
  • Вопросы по биологии и зоологии

Почитать еще

Эндоплазматическая сеть

Эндоплазматическая сеть (эндоплазматичеческий ретикулум) — органоид клетки эукариот. В виде сети каналов и цистерн, ограниченных одинарной мембраной, она разветвлена по всему объему цитоплазмы. Эндоплазматическая сеть участвует в обмене веществ: синтезирует липиды для наружной двойной мембраны клетки и для собственной, одинарной мембраны, обеспечивает транспорт веществ между органоидами клетки, служит копилкой веществ и местом их изоляции.

Различают два типа эндоплазматической сети — шероховатую и гладкую. Шероховатая сеть несет на наружной поверхности многочисленные рибосомы. Синтезированные на них белки здесь изолируются от других белков клетки путем переноса их через мембрану канала эндоплазматической сети. Она «узнает пропускаемые белки по их особым «сигнальным» концам. Отщепление этих концов после прохождения белка через мембрану называют созреванием белка. Одни белки — секреторные — выделяются из клетки. Другие включаются во все мембраны клетки.


Схематическое представление клеточного ядра, эндоплазматического ретикулума и комплекса Гольджи.
(1) Ядро клетки. (2) Поры ядерной мембраны. (3) Гранулярный эндоплазматический ретикулум.
(4) Агранулярный эндоплазматический ретикулум. (5) Рибосомы на поверхности гранулярного
эндоплазматического ретикулума. (6) Макромолекулы (7) Транспортные везикулы.
(8) Комплекс Гольджи. (9) Цис-Гольджи (10) Транс-Гольджи (11) Цистерны Гольджи

Гладкая сеть состоит из трубочек, каналов и пузырьков меньшего сечения, чем в шероховатой сети. Ее функции так же разнообразны: здесь синтезируются липиды мембран, но, кроме них, и не мембранные липиды (например, особые гормоны животных), специальными ферментными комплексами обезвреживаются ядовитые вещества, накапливаются ионы. Так, в поперечнополосатых мышцах гладкая сеть служит резервуаром ионов кальция. Мембраны этой сети содержат мощные кальциевые «насосы», которые в сотые доли секунды переносят в любую сторону большое количество ионов кальция. В специализированных клетках вид гладкой сети различен, что связано с ее конкретными функциями во внутриклеточном обмене.

Эндоплазматическая сеть, очень ранима при воздействиях: она быстро теряет рибосомы и разрушается. Однако благодаря способности к быстрым перестройкам может восстанавливаться.

Источник: Энциклопедический словарь юного биолога. Составитель Аспиз М. Е. Издательство «Педагогика», Москва, 1985

Лекция № 7. Эукариотическая клетка: строение и функции органоидов

Органоиды — постоянные, обязательно присутствующие, компоненты клетки, выполняющие специфические функции.

Эндоплазматическая сеть

Эндоплазматическая сеть (ЭПС), или эндоплазматический ретикулум (ЭПР), — одномембранный органоид. Представляет собой систему мембран, формирующих «цистерны» и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство — полости ЭПС. Мембраны с одной стороны связаны с цитоплазматической мембраной, с другой — с наружной ядерной мембраной. Различают два вида ЭПС: 1) шероховатая (гранулярная), содержащая на своей поверхности рибосомы, и 2) гладкая (агранулярная), мембраны которой рибосом не несут.

Функции: 1) транспорт веществ из одной части клетки в другую, 2) разделение цитоплазмы клетки на компартменты ( «отсеки»), 3) синтез углеводов и липидов (гладкая ЭПС), 4) синтез белка (шероховатая ЭПС), 5) место образования аппарата Гольджи.

Аппарат Гольджи

Аппарат Гольджи, или комплекс Гольджи, — одномембранный органоид. Представляет собой стопки уплощенных «цистерн» с расширенными краями. С ними связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4-х–6-ти «цистерн», является структурно-функциональной единицей аппарата Гольджи и называется диктиосомой. Число диктиосом в клетке колеблется от одной до нескольких сотен. В растительных клетках диктиосомы обособлены.

Аппарат Гольджи обычно расположен около клеточного ядра (в животных клетках часто вблизи клеточного центра).

Функции аппарата Гольджи: 1) накопление белков, липидов, углеводов, 2) модификация поступивших органических веществ, 3) «упаковка» в мембранные пузырьки белков, липидов, углеводов, 4) секреция белков, липидов, углеводов, 5) синтез углеводов и липидов, 6) место образования лизосом. Секреторная функция является важнейшей, поэтому аппарат Гольджи хорошо развит в секреторных клетках.

Читайте также:  Базальная температура при беременности на ранних сроках до задержки 37

Лизосомы

Лизосомы — одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,2 до 0,8 мкм), содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки, которые после отделения от аппарата Гольджи становятся собственно лизосомами. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов. Расщепление веществ с помощью ферментов называют лизисом.

Различают: 1) первичные лизосомы, 2) вторичные лизосомы. Первичными называются лизосомы, отшнуровавшиеся от аппарата Гольджи. Первичные лизосомы являются фактором, обеспечивающим экзоцитоз ферментов из клетки.

Вторичными называются лизосомы, образовавшиеся в результате слияния первичных лизосом с эндоцитозными вакуолями. В этом случае в них происходит переваривание веществ, поступивших в клетку путем фагоцитоза или пиноцитоза, поэтому их можно назвать пищеварительными вакуолями.

Автофагия — процесс уничтожения ненужных клетке структур. Сначала подлежащая уничтожению структура окружается одинарной мембраной, затем образовавшаяся мембранная капсула сливается с первичной лизосомой, в результате также образуется вторичная лизосома (автофагическая вакуоль), в которой эта структура переваривается. Продукты переваривания усваиваются цитоплазмой клетки, но часть материала так и остается непереваренной. Вторичная лизосома, содержащая этот непереваренный материал, называется остаточным тельцем. Путем экзоцитоза непереваренные частицы удаляются из клетки.

Автолиз — саморазрушение клетки, наступающее вследствие высвобождения содержимого лизосом. В норме автолиз имеет место при метаморфозах (исчезновение хвоста у головастика лягушек), инволюции матки после родов, в очагах омертвления тканей.

Функции лизосом: 1) внутриклеточное переваривание органических веществ, 2) уничтожение ненужных клеточных и неклеточных структур, 3) участие в процессах реорганизации клеток.

Вакуоли

Вакуоли — одномембранные органоиды, представляют собой «емкости», заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС и аппарат Гольджи. Молодые растительные клетки содержат много мелких вакуолей, которые затем по мере роста и дифференцировки клетки сливаются друг с другом и образуют одну большую центральную вакуоль. Центральная вакуоль может занимать до 95% объема зрелой клетки, ядро и органоиды оттесняются при этом к клеточной оболочке. Мембрана, ограничивающая растительную вакуоль, называется тонопластом. Жидкость, заполняющая растительную вакуоль, называется клеточным соком. В состав клеточного сока входят водорастворимые органические и неорганические соли, моносахариды, дисахариды, аминокислоты, конечные или токсические продукты обмена веществ (гликозиды, алкалоиды), некоторые пигменты (антоцианы).

В животных клетках имеются мелкие пищеварительные и автофагические вакуоли, относящиеся к группе вторичных лизосом и содержащие гидролитические ферменты. У одноклеточных животных есть еще сократительные вакуоли, выполняющие функцию осморегуляции и выделения.

Функции вакуоли: 1) накопление и хранение воды, 2) регуляция водно-солевого обмена, 3) поддержание тургорного давления, 4) накопление водорастворимых метаболитов, запасных питательных веществ, 5) окрашивание цветов и плодов и привлечение тем самым опылителей и распространителей семян, 6) см. функции лизосом.

Эндоплазматическая сеть, аппарат Гольджи, лизосомы и вакуоли образуют единую вакуолярную сеть клетки, отдельные элементы которой могут переходить друг в друга.

Митохондрии

Строение митохондрии:
1 — наружная мембрана;
2 — внутренняя мембрана; 3 — матрикс; 4 — криста; 5 — мультиферментная система; 6 — кольцевая ДНК.

Форма, размеры и количество митохондрий чрезвычайно варьируют. По форме митохондрии могут быть палочковидными, округлыми, спиральными, чашевидными, разветвленными. Длина митохондрий колеблется в пределах от 1,5 до 10 мкм, диаметр — от 0,25 до 1,00 мкм. Количество митохондрий в клетке может достигать нескольких тысяч и зависит от метаболической активности клетки.

Митохондрия ограничена двумя мембранами. Наружная мембрана митохондрий (1) гладкая, внутренняя (2) образует многочисленные складки — кристы (4). Кристы увеличивают площадь поверхности внутренней мембраны, на которой размещаются мультиферментные системы (5), участвующие в процессах синтеза молекул АТФ. Внутреннее пространство митохондрий заполнено матриксом (3). В матриксе содержатся кольцевая ДНК (6), специфические иРНК, рибосомы прокариотического типа (70S-типа), ферменты цикла Кребса.

Митохондриальная ДНК не связана с белками («голая»), прикреплена к внутренней мембране митохондрии и несет информацию о строении примерно 30 белков. Для построения митохондрии требуется гораздо больше белков, поэтому информация о большинстве митохондриальных белков содержится в ядерной ДНК, и эти белки синтезируются в цитоплазме клетки. Митохондрии способны автономно размножаться путем деления надвое. Между наружной и внутренней мембранами находится протонный резервуар, где происходит накопление Н + .

Функции митохондрий: 1) синтез АТФ, 2) кислородное расщепление органических веществ.

Согласно одной из гипотез (теория симбиогенеза) митохондрии произошли от древних свободноживущих аэробных прокариотических организмов, которые, случайно проникнув в клетку-хозяина, затем образовали с ней взаимовыгодный симбиотический комплекс. В пользу этой гипотезы свидетельствуют следующие данные. Во-первых, митохондриальная ДНК имеет такие же особенности строения как и ДНК современных бактерий (замкнута в кольцо, не связана с белками). Во-вторых, митохондриальные рибосомы и рибосомы бактерий относятся к одному типу — 70S-типу. В-третьих, механизм деления митохондрий сходен с таковым бактерий. В-четвертых, синтез митохондриальных и бактериальных белков подавляется одинаковыми антибиотиками.

Пластиды

Строение пластид: 1 — наружная мембрана; 2 — внутренняя мембрана; 3 — строма; 4 — тилакоид; 5 — грана; 6 — ламеллы; 7 — зерна крахмала; 8 — липидные капли.

Пластиды характерны только для растительных клеток. Различают три основных типа пластид: лейкопласты — бесцветные пластиды в клетках неокрашенных частей растений, хромопласты — окрашенные пластиды обычно желтого, красного и оранжевого цветов, хлоропласты — зеленые пластиды.

Хлоропласты. В клетках высших растений хлоропласты имеют форму двояковыпуклой линзы. Длина хлоропластов колеблется в пределах от 5 до 10 мкм, диаметр — от 2 до 4 мкм. Хлоропласты ограничены двумя мембранами. Наружная мембрана (1) гладкая, внутренняя (2) имеет сложную складчатую структуру. Наименьшая складка называется тилакоидом (4). Группа тилакоидов, уложенных наподобие стопки монет, называется граной (5). В хлоропласте содержится в среднем 40–60 гран, расположенных в шахматном порядке. Граны связываются друг с другом уплощенными каналами — ламеллами (6). В мембраны тилакоидов встроены фотосинтетические пигменты и ферменты, обеспечивающие синтез АТФ. Главным фотосинтетическим пигментом является хлорофилл, который и обусловливает зеленый цвет хлоропластов.

Читайте также:  Как лечить ангину правильно - Лайфхакер

Внутреннее пространство хлоропластов заполнено стромой (3). В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты цикла Кальвина, зерна крахмала (7). Внутри каждого тилакоида находится протонный резервуар, происходит накопление Н + . Хлоропласты, также как митохондрии, способны к автономному размножению путем деления надвое. Они содержатся в клетках зеленых частей высших растений, особенно много хлоропластов в листьях и зеленых плодах. Хлоропласты низших растений называют хроматофорами.

Функция хлоропластов: фотосинтез. Полагают, что хлоропласты произошли от древних эндосимбиотических цианобактерий (теория симбиогенеза). Основанием для такого предположения является сходство хлоропластов и современных бактерий по ряду признаков (кольцевая, «голая» ДНК, рибосомы 70S-типа, способ размножения).

Лейкопласты. Форма варьирует (шаровидные, округлые, чашевидные и др.). Лейкопласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя образует малочисленные тилакоиды. В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты синтеза и гидролиза запасных питательных веществ. Пигменты отсутствуют. Особенно много лейкопластов имеют клетки подземных органов растения (корни, клубни, корневища и др.). Функция лейкопластов: синтез, накопление и хранение запасных питательных веществ. Амилопласты — лейкопласты, которые синтезируют и накапливают крахмал, элайопласты — масла, протеинопласты — белки. В одном и том же лейкопласте могут накапливаться разные вещества.

Хромопласты. Ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя или также гладкая, или образует единичные тилакоиды. В строме имеются кольцевая ДНК и пигменты — каротиноиды, придающие хромопластам желтую, красную или оранжевую окраску. Форма накопления пигментов различная: в виде кристаллов, растворены в липидных каплях (8) и др. Содержатся в клетках зрелых плодов, лепестков, осенних листьев, редко — корнеплодов. Хромопласты считаются конечной стадией развития пластид.

Функция хромопластов: окрашивание цветов и плодов и тем самым привлечение опылителей и распространителей семян.

Все виды пластид могут образовываться из пропластид. Пропластиды — мелкие органоиды, содержащиеся в меристематических тканях. Поскольку пластиды имеют общее происхождение, между ними возможны взаимопревращения. Лейкопласты могут превращаться в хлоропласты (позеленение клубней картофеля на свету), хлоропласты — в хромопласты (пожелтение листьев и покраснение плодов). Превращение хромопластов в лейкопласты или хлоропласты считается невозможным.

Рибосомы

Строение рибосомы:
1 — большая субъединица; 2 — малая субъединица.

Рибосомы — немембранные органоиды, диаметр примерно 20 нм. Рибосомы состоят из двух субъединиц — большой и малой, на которые могут диссоциировать. Химический состав рибосом — белки и рРНК. Молекулы рРНК составляют 50–63% массы рибосомы и образуют ее структурный каркас. Различают два типа рибосом: 1) эукариотические (с константами седиментации целой рибосомы — 80S, малой субъединицы — 40S, большой — 60S) и 2) прокариотические (соответственно 70S, 30S, 50S).

В составе рибосом эукариотического типа 4 молекулы рРНК и около 100 молекул белка, прокариотического типа — 3 молекулы рРНК и около 55 молекул белка. Во время биосинтеза белка рибосомы могут «работать» поодиночке или объединяться в комплексы — полирибосомы (полисомы). В таких комплексах они связаны друг с другом одной молекулой иРНК. Прокариотические клетки имеют рибосомы только 70S-типа. Эукариотические клетки имеют рибосомы как 80S-типа (шероховатые мембраны ЭПС, цитоплазма), так и 70S-типа (митохондрии, хлоропласты).

Субъединицы рибосомы эукариот образуются в ядрышке. Объединение субъединиц в целую рибосому происходит в цитоплазме, как правило, во время биосинтеза белка.

Функция рибосом: сборка полипептидной цепочки (синтез белка).

Цитоскелет

Цитоскелет образован микротрубочками и микрофиламентами. Микротрубочки — цилиндрические неразветвленные структуры. Длина микротрубочек колеблется от 100 мкм до 1 мм, диаметр составляет примерно 24 нм, толщина стенки — 5 нм. Основной химический компонент — белок тубулин. Микротрубочки разрушаются под воздействием колхицина. Микрофиламенты — нити диаметром 5–7 нм, состоят из белка актина. Микротрубочки и микрофиламенты образуют в цитоплазме сложные переплетения. Функции цитоскелета: 1) определение формы клетки, 2) опора для органоидов, 3) образование веретена деления, 4) участие в движениях клетки, 5) организация тока цитоплазмы.

Клеточный центр

Клеточный центр включает в себя две центриоли и центросферу. Центриоль представляет собой цилиндр, стенка которого образована девятью группами из трех слившихся микротрубочек (9 триплетов), соединенных между собой через определенные интервалы поперечными сшивками. Центриоли объединены в пары, где они расположены под прямым углом друг к другу. Перед делением клетки центриоли расходятся к противоположным полюсам, и возле каждой из них возникает дочерняя центриоль. Они формируют веретено деления, способствующее равномерному распределению генетического материала между дочерними клетками. В клетках высших растений (голосеменные, покрытосеменные) клеточный центр центриолей не имеет. Центриоли относятся к самовоспроизводящимся органоидам цитоплазмы, они возникают в результате дупликации уже имеющихся центриолей. Функции: 1) обеспечение расхождения хромосом к полюсам клетки во время митоза или мейоза, 2) центр организации цитоскелета.

Органоиды движения

Присутствуют не во всех клетках. К органоидам движения относятся реснички (инфузории, эпителий дыхательных путей), жгутики (жгутиконосцы, сперматозоиды), ложноножки (корненожки, лейкоциты), миофибриллы (мышечные клетки) и др.

Жгутики и реснички — органоиды нитевидной формы, представляют собой аксонему, ограниченную мембраной. Аксонема — цилиндрическая структура; стенка цилиндра образована девятью парами микротрубочек, в его центре находятся две одиночные микротрубочки. В основании аксонемы находятся базальные тельца, представленные двумя взаимно перпендикулярными центриолями (каждое базальное тельце состоит из девяти триплетов микротрубочек, в его центре микротрубочек нет). Длина жгутика достигает 150 мкм, реснички в несколько раз короче.

Миофибриллы состоят из актиновых и миозиновых миофиламентов, обеспечивающих сокращение мышечных клеток.

Перейти к лекции №6 «Эукариотическая клетка: цитоплазма, клеточная оболочка, строение и функции клеточных мембран»

Перейти к лекции №8 «Ядро. Хромосомы»

Смотреть оглавление (лекции №1-25)

Ссылка на основную публикацию
Шелушатся губы, почему постоянно сохнут, домашние рецепты
Почему сохнут губы и как с этим бороться Причины возникновения трещинок на губах и способы восстановления Кожа на губах тоньше,...
Что такое некроз причины и признаки некроза, симптомы, классификация и лечение некроза
Некроз Причины и симптомы некроза, исход и профилактика Причины некроза Некроз – необратимое прекращение жизненной активности клеток, тканей или органов...
Что такое открытое овальное окно Страна Мам
Опасно ли открытое овальное окно в сердце у детей? Высшее образование: Кардиохирург Кабардино-Балкарский государственный университет им. Х.М. Бербекова, медицинский факультет...
Шелушение кожи в ушах причины и лечение · GitHub
Почему шелушатся уши? У вас шелушатся уши? Тогда стоит всерьез призадуматься о своем здоровье. К сожалению, это не только эстетическая...
Adblock detector